Publication

Peer Reviewed Papers in International Journals

  1. Minisola, R., Robutti, O., & Miyakawa, T. (2024). Didacticians introducing lesson study for the professional development of prospective mathematics teachers. Asian Journal for Mathematics Education, (online first). https://doi.org/10.1177/27527263241228324
  2. Wang, C., Shinno, Y., Xu, B., & Miyakawa, T. (2023). An anthropological point of view: exploring the Chinese and Japanese issues of translation about teaching resources. ZDM – Mathematics Education, 55(3), 705-717. (SpringerLinkZDM Webinar)
  3. Batteau, V. & Miyakawa, T. (2020). Des spécificités de l'enseignement des mathématiques à l'école primaire au Japon : une étude des pratiques d'un enseignant. Annales de Didactiques et de Sciences Cognitives, 25, 9-48. https://doi.org/10.4000/adsc.523 (LINK)
  4. Kuzuoka, K. & Miyakawa, T. (2020). Implementing multidisciplinary study and research paths in Japanese lower secondary school teaching. Educação Matemática Pesquisa, 22(4), 173-188. https://doi.org/10.23925/1983-3156.2020v22i4p173-188 (LINK)
  5. Clivaz, S. & Miyakawa, T. (2020). The effects of culture on mathematics lessons: an international comparative study of a collaboratively designed lesson. Educational Studies in Mathematics, 105(1), 53-70. (SpringerLinkSharedIt)
  6. Miyakawa, T. & Winsløw, C. (2019). Paradidactic infrastructure for sharing and documenting mathematics teacher knowledge: a case study of "practice research" in Japan. Journal of Mathematics Teacher Education, 22(3), 281-303. (SpringerLinkSharedIt)
  7. Trouche, L.Gitirana, V.Miyakawa, T.Pepin, B. & Wang, C. (2019). Studying mathematics teachers interactions with curriculum materials through different lenses: towards a deeper understanding of the processes at stake. International Journal of Educational Research, 93, 53-67. (ScienceDirect)
  8. Shinno, Y., Miyakawa, T., Iwasaki, H., Kunimune, S., Mizoguchi, T., Ishii, T., & Abe, Y. (2018). Challenges in curriculum development for mathematical proof in secondary school: cultural dimensions to be considered. For the learning of mathematics, 38 (1), 26-30. (PDF 404 KB)
  9. Miyakawa, T. (2017). Comparative analysis on the nature of proof to be taught in geometry: the cases of French and Japanese lower secondary schools. Educational Studies in Mathematics, 94 (1), 37-54. (SpringerLinkSharedIt)
  10. Miyakawa T. & Winsløw C. (2013). Developing mathematics teacher knowledge: the paradidactic infrastructure of "open lesson" in Japan. Journal of Mathematics Teacher Education, 16 (3), 185-209. (SpringerLinkSharedIt) (PDF Draft)
  11. Miyakawa T. & Winsløw C. (2009). Didactical designs for students' proportional reasoning: An "open approach" lesson and a "fundamental situation". Educational Studies in Mathematics, 72 (2), 199-218. (SpringerLinkSharedIt) (PDF Draft)
  12. Miyakawa T. & Winsløw C. (2009). Un dispositif japonais pour le travail en équipe d'enseignants : étude collective d’une leçon. Education & Didactique, 3 (1), 77-90. https://doi.org/10.4000/educationdidactique.420
  13. Herbst P. & Miyakawa T. (2008). When, how, and why prove theorems: A methodology for studying the perspective of geometry teachers. ZDM Mathematics Education, 40 (3), 469 - 486. (SpringerLinkSharedIt)

Book Chapters

  1. Miyakawa, T. (2022). Analyzing Mathematics Teachers’ Collective Work in Terms of the Inquiry. In Y. Chevallard, et al. (Eds.) Advances in the Anthropological Theory of the Didactic (pp. 91-102). Birkhäuser, Cham. (SpringerLink)
  2. Miyakawa, T. & García, F. J. (2022). Teacher Learning in Collaborative Settings: Analysis of an Open Lesson. In Y. Chevallard, et al. (Eds) Advances in the Anthropological Theory of the Didactic (pp. 165-171). Birkhäuser, Cham. (SpringerLink)
  3. Miyakawa, T. & Xu, B. (2019). Teachers’ collective work inside and outside school as an essential source of mathematics teachers’ documentation work: experiences from Japan and China. In L. Trouche, G. Gueudet, & B. Pepin (Eds.). The 'Resource' Approach to Mathematics Education (pp. 145-172). Cham: Springer. (SpringerLink)
  4. Pepin, B., Artigue, M., Gitirana, V., Miyakawa, T., Ruthven, K., & Xu, B. (2019). Mathematics teachers as curriculum designers: an international perspective to develop a deeper understanding of the concept. In L. Trouche, G. Gueudet, & B. Pepin (Eds.). The 'Resource' Approach to Mathematics Education (pp. 121-143). Cham: Springer. (SpringerLink)
  5. Jessen, B., Otaki, K., Miyakawa, T., Hamanaka, H., Mizoguchi, T., Shinno, Y., & Winsløw, C. (2019). The ecology of study and research paths in upper secondary school: the cases of Denmark and Japan. In M. Bosch, Y. Chevallard, F. J. García, & J. Monaghan (Eds). Working with the anthropological theory of the didactic: A comprehensive casebook (pp. 118-138). UK: Routledge.
  6. Miyakawa, T. & Pepin, B. (2016). Le "school-based" développement professionnel des enseignants en mathématiques : deux pratiques collectives en Europe et au Japon. In Y. Matheron et al. (Eds.) Enjeux et débats en didactique des mathématiques (Vol. 1, pp. 145-177). Grenoble: La Pensée Sauvage. (Les actes de XVIIIe école d'été de didactique des mathématiques Brest (Bretagne), 2015)
  7. Miyakawa, T. (2015). What is a good lesson in Japan? An analysis. In M. Inprasitha, M. Isoda, P. Wang-Iverson, & B.-H. Yeap (Eds.) Lesson Study: Challenges in Mathematics Education (pp. 327-349). Singapore: World Scientific. (Link)

Peer Reviewed Papers in Proceedings of International Conferences

  1. Miyakawa, T. & Shinno, Y. (2021). Characterizing proof and proving in the classroom from a cultural perspective. In M. Inprasitha, N. Changsri, & N. Boonsena (Eds.) Proceedings of the 44th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 250-257). Khon Kaen, Thailand: PME. (PDF 421 KB)
  2. Clivaz, S. & Miyakawa, T. (2019). Cultural effects on mathematics lessons: through the international collaborative development of a lesson in two countries. In U. T. Jankvist, M. Heuvel-Panhuizen, & M. Veldhuis (Eds.) Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (CERME11) (pp. 4824-4831). Utrecht: Utrecht University. (HAL)
  3. Shinno, Y., Miyakawa, T., Mizoguchi, T., Hamanaka, H., & Kunimune, S. (2019). Some Linguistic Issues on the Teaching of Mathematical Proof. In U. T. Jankvist, M. Heuvel-Panhuizen, & M. Veldhuis (Eds.) Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (CERME11) (pp. 318-325). Utrecht: Utrecht University. (HAL)
  4. Miyakawa, T. & Clivaz, S. (2019). Pre-service teachers’ resources in the cross-cultural collaborative design of a mathematics lesson. In S. Rezat, L. Fan, M. Hattermann, J. Schumacher, & H. Wuschke (Eds.). Proceedings of the Third International Conference on Mathematics Textbook Research and Development (ICMT3) (pp. 67-72). Paderborn: Universitätsbibliothek Paderborn. (PDF 518 KB)
  5. Cousin, M. & Miyakawa, T. (2017). Evolution of proof form in Japanese geometry textbooks. In T. Dooley & G. Gueudet (Eds.) Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (CERME10, February 1-5, 2017) (pp. 131-138). Dublin, Ireland: DCU Institute of Education and ERME. (PDF 1.1 MB)
  6. Otaki, K., Miyakawa, T. & Hamanaka, H. (2016). Proving activities in inquiries using the Internet. In C. Csíkos, A. Rausch, & J. Szitányi (Eds.) Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 11-18). Szeged, Hungary: PME. (PDF 382 KB)
  7. Iwasaki, H. & Miyakawa, T. (2015). Change in in-service teachers' discourse during practice-based professional development in university. In K. Beswick, T. Muir & J. Wells (Eds.) Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education, (Vol. 3, pp. 89-96). Hobart, Tasmania: PME. (PDF 300 KB)
  8. Shinno, Y., Miyakawa, T., Iwasaki, H., Kunimune, S., Mizoguchi, T., Ishii, T. & Abe, Y. (2015). A theoretical framework for curriculum development in the teaching of mathematical proof at the secondary school level. In K. Beswick, T. Muir & J. Wells (Eds.) Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education, (Vol. 4, pp. 169-176). Hobart, Tasmania: PME. (PDF 534 KB)
  9. Miyakawa, T. (2014). Functions of proof: a comparative analysis of French and Japanese national curricula and textbooks. In K. Jones, C. Bokhove, G. Howson & L. Fan (Eds.), Proceedings of the International Conference on Mathematics Research and Development (pp. 333-338), ICMT2014, 29-31 July 2014, The University of Southampton, UK. (Link)
  10. Miyakawa T. (2012). Proof in geometry: a comparative analysis of French and Japanese textbooks. In Tai-Yih Tso (Ed.), Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education (Vol.3, pp. 225-232), Taipei, Taiwan: PME. (PDF 75 KB)
  11. Miyakawa T. & Winsløw C. (2011). Japanese "open lessons" as institutional context for developing mathematics teacher knowledge. In M. Bosch, J. Gascón, R. Olarría, M. Artaud, A. Bronner, Y. Chevallard, G. Cirade, C. Ladage & M. Larguier (Eds.) Un panorama de la TAD (pp. 405-414) III International Conference on the Anthropological Theory of the Didactic (CATD-3). Bellaterra, Barcelona: CRM.
  12. Miyakawa T. & Herbst P. (2008). Why some theorems are not proven in geometry class: dispositions and constraints. TSG18 ICME-11, 6-13 July, Monterrey, Mexico (accepted and presented as a long presentation, http://tsg.icme11.org/tsg/show/19), (PDF 250 KB)
  13. Miyakawa T. & Herbst P. (2007). Geometry teachers' perspectives on convincing and proving when installing a theorem in class. In T. Lamberg & L. R. Wiest (Eds.), Proceedings of the 29th annual meetings of the North American Chapter of the International Group for the Psychology of Mathematics Education (PME-NA) (pp. 366-373) Stateline (Lake Tahoe), NV: University of Nevada, Reno. (PDF 285 KB)
  14. Miyakawa T. & Herbst P. (2007). The nature and role of proof when installing theorems: the perspective of geometry teachers. In J. H. Woo, H. C. Lew, K. S. Park & D. Y. Seo (Eds.), Proceedings of the 31th Conference of the International Group for the Psychology of Mathematics Education (Vol.3, pp. 281-288), Seoul, Korea: PME. (PDF 224 KB)
  15. Miyakawa T. (2004). Reflective symmetry in construction and proving. In M. J. Høines & A. B. Fuglestad (Eds.), Proceedings of the 28th International Conference of Psychology of Mathematics Education (vol.3, pp.337-344), Bergen, Norway: PME. (PDF 266 KB)
  16. Miyakawa T. (2004). The nature of students' rule of inference in proving: the case of reflective symmetry. TSG19 ICME-10, 4-11 July, Copenhagen. (PDF 41 KB)
  17. Miyakawa T. (2002). Relation between proof and conception: the case of the sum of two even numbers. In A. D. Cockburn & E. Nardi (Eds.), Proceedings of the 26th International Conference of Psychology of Mathematics Education (vol.3, pp.353-360), Norwich: PME. (PDF 46 KB)

Papers without Peer Review in Proceedings of Conferences

  1. Wang, C., Shinno, Y., Xu, B., & Miyakawa, T. (2022). Translation work from an anthropological perspective. In C. Fernandez et al. (Eds.), Proceedings of the 45th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1 (pp. 108-110). PME.
  2. Chino, K., Fujita, T., Komatsu, K., Makino, T., Miyakawa, T., Miyazaki, M., Mizutani, N., Nakagawa, H., Otsuka, S. & Tsujiyama, Y. (2010). An assessment framework for students’ abilities/competencies in proving. Proceedings of the 5th East Asia Regional Conference on Mathematics Education (EARCOME5) (Vol. 2, pp.416-423). Tsukuba: Inamoto Printing Co. Ltd.
  3. Miyakawa T. & Winsløw C. (2009). Étude collective d'une leçon: un dispositif japonais pour la recherche en didactique des mathématiques. In I. Bloch & F. Conne (Eds.) Nouvelles perspectives en didactique des mathématiques: Actes de la XIVème école d'été (CD-ROM: thème 2; 17 pages). Grenoble: La Pensée Sauvage Édition.
  4. Isoda M., Kakihana K., Miyakawa T., Aoyama K., Yoden K., Yamanoi E., Uehara K., Chino K. (2005). Mathematics Classroom Innovation with Technology: Japanese Movement. In S.-C. Chu, H.-C. Lew and W.-C. Yang (Eds.), Proceedings of the 10th Asian Technology Conference in Mathematics (pp.84-93), Cheong-Ju, South Korea.
  5. Miyakawa T. (2004). Les recherches japonaises en enseignement des mathématiques. In Proceedings of the 5th Tunisia-Japan Symposium on Culture, Science and Technology: TJCST-2004 (pp. 223-225), Sfax, Tunisia.

Thèse, mémoire, etc.

  1. Miyakawa T. (2005). Une étude du rapport entre connaissance et preuve : le cas de la notion de symétrie orthogonale. Thèse de l'Université, LEIBNIZ - IMAG, Université Joseph Fourier - Grenoble 1. (thèse sans annexes: PDF 2 MB)
  2. Miyakawa T. (2000). Conception sur la preuve chez les enseignants au collège. Mémoire de DEA, LEIBNIZ - IMAG, Université Joseph Fourier - Grenoble 1.

Editorial works: journals, books, proceedings, etc.

  1. Miyakawa, T. (2022). Handling the diversity of research on mathematics teacher education. Journal of Mathematics Teacher Education, 25 (6), 633-636. https://doi.org/10.1007/s10857-022-09559-y
  2. Gitirana, V., Miyakawa, T., Rafalska, M., Soury-Lavergne, S., & Trouche, L. (Eds.) (2018). Proceedings of the Re(s)sources 2018 international conference. Lyon: ENS de Lyon.
  3. Isoda, M., Stephens, M., Ohara, Y., & Miyakawa, T. (Eds.). (2007). Japanese lesson study in mathematics: Its impact, diversity and potential for educational improvement. Singapore: World Scientific Publishing.